google-auth Documentation
Release 1.30.0

Google, Inc.

May 03, 2021

Contents

6

User Guide

1.1 Credentials and account types v v v it e e e e e e e e e e e e
1.2 Obtaining credentials e e
1.3 Making authenticated requests Lo e e e e e e e e e

google
2.1 googlepackage e

Installing
Usage
License

Contributing

Python Module Index

Index

115

117

119

121

123

125

CHAPTER 1

User Guide

1.1 Credentials and account types

Credentials are the means of identifying an application or user to a service or APIL. Credentials can be obtained
with three different types of accounts: service accounts, user accounts and external accounts.

Credentials from service accounts identify a particular application. These types of credentials are used in server-to-
server use cases, such as accessing a database. This library primarily focuses on service account credentials.

Credentials from user accounts are obtained by asking the user to authorize access to their data. These types of
credentials are used in cases where your application needs access to a user’s data in another service, such as accessing
a user’s documents in Google Drive. This library provides no support for obtaining user credentials, but does provide
limited support for using user credentials.

Credentials from external accounts (workload identity federation) are used to identify a particular application from
an on-prem or non-Google Cloud platform including Amazon Web Services (AWS), Microsoft Azure or any identity
provider that supports OpenID Connect (OIDC).

1.2 Obtaining credentials

1.2.1 Application default credentials

Google Application Default Credentials abstracts authentication across the different Google Cloud Platform hosting
environments. When running on any Google Cloud hosting environment or when running locally with the Google
Cloud SDK installed, default () can automatically determine the credentials from the environment:

import google.auth

credentials, project = google.auth.default ()

If your application requires specific scopes:

https://developers.google.com/identity/protocols/application-default-credentials
https://cloud.google.com/sdk
https://cloud.google.com/sdk

google-auth Documentation, Release 1.30.0

credentials, project = google.auth.default (
scopes=['https://www.googleapis.com/auth/cloud-platform'])

Application Default Credentials also support workload identity federation to access Google Cloud resources from
non-Google Cloud platforms including Amazon Web Services (AWS), Microsoft Azure or any identity provider that
supports OpenID Connect (OIDC). Workload identity federation is recommended for non-Google Cloud environments
as it avoids the need to download, manage and store service account private keys locally.

1.2.2 Service account private key files

A service account private key file can be used to obtain credentials for a service account. You can create a private key
using the Credentials page of the Google Cloud Console. Once you have a private key you can either obtain credentials
one of three ways:

1. Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the full path to your service ac-
count private key file

$ export GOOGLE_APPLICATION_ CREDENTIALS=/path/to/key.json

Then, use application default credentials. default () checks for the
GOOGLE_APPLICATION_CREDENTIALS environment variable before all other checks, so this will
always use the credentials you explicitly specify.

2. Use service_account.Credentials.from service account_file:

from google.oauth2 import service_account

credentials = service_account.Credentials.from _service_account_file(
'/path/to/key.json')

scoped_credentials = credentials.with_scopes (
['https://www.googleapis.com/auth/cloud-platform'])

3. Use service_account.Credentials.from service_ account_info:

import json

from google.oauth2 import service_account

json_acct_info = json.loads (function_to_get_json_creds())
credentials = service_account.Credentials.from_service_account_info(

json_acct_info)

scoped_credentials = credentials.with_scopes(
['https://www.googleapis.com/auth/cloud-platform'])

Warning: Private keys must be kept secret. If you expose your private key it is recommended to revoke it
immediately from the Google Cloud Console.

1.2.3 Compute Engine, Container Engine, and the App Engine flexible environment

Applications running on Compute Engine, Container Engine, or the App Engine flexible environment can obtain cre-
dentials provided by Compute Engine service accounts. When running on these platforms you can obtain credentials

2 Chapter 1. User Guide

https://console.cloud.google.com/apis/credentials
https://cloud.google.com/compute
https://cloud.google.com/container-engine
https://cloud.google.com/appengine/docs/flexible/
https://cloud.google.com/compute/docs/access/service-accounts

google-auth Documentation, Release 1.30.0

for the service account one of two ways:
1. Use application default credentials. default () will automatically detect if these credentials are available.

2. Use compute_engine.Credentials:

from google.auth import compute_engine

credentials = compute_engine.Credentials()

1.2.4 The App Engine standard environment
Applications running on the App Engine standard environment can obtain credentials provided by the App Engine
App Identity API. You can obtain credentials one of two ways:

1. Use application default credentials. default () will automatically detect if these credentials are available.

2. Use app_engine.Credentials:

from google.auth import app_engine

credentials = app_engine.Credentials ()

In order to make authenticated requests in the App Engine environment using the credentials and transports provided
by this library, you need to follow a few additional steps:

1. If you are using the google.auth. transport.requests transport, vendor in the requests-toolbelt li-
brary into your app, and enable the App Engine monkeypatch. Refer App Engine documentation for more
details on this.

2. To make HTTPS calls, enable the ss1 library for your app by adding the following configuration to the app.
yaml file:

libraries:
- name: ssl
version: latest

3. Enable billing for your App Engine project. Then enable socket support for your app. This can be achieved by
setting an environment variable in the app . yaml file:

env_variables:
GAE_USE_SOCKETS_HTTPLIB : 'true'

1.2.5 User credentials

User credentials are typically obtained via OAuth 2.0. This library does not provide any direct support for obtaining
user credentials, however, you can use user credentials with this library. You can use libraries such as oauthlib to
obtain the access token. After you have an access token, you can create a google.oauth2.credentials.
Credentials instance:

import google.oauth2.credentials

credentials = google.ocauth2.credentials.Credentials (
'access_token')

If you obtain a refresh token, you can also specify the refresh token and token URI to allow the credentials to be
automatically refreshed:

1.2. Obtaining credentials 3

https://cloud.google.com/appengine/docs/python
https://cloud.google.com/appengine/docs/python/appidentity/
https://cloud.google.com/appengine/docs/python/appidentity/
https://toolbelt.readthedocs.io/en/latest/
https://cloud.google.com/appengine/docs/standard/python/issue-requests
https://developers.google.com/identity/protocols/OAuth2
https://oauthlib.readthedocs.io/en/latest/

google-auth Documentation, Release 1.30.0

credentials = google.ocauth2.credentials.Credentials(
'access_token',
refresh_token='refresh_ token',
token_uri='"token_uri',
client_id='client_id",
client_secret="client_secret')

There is a separate library, google-auth-oauthlib, that has some helpers for integrating with requests-oauthlib
to provide support for obtaining user credentials. You can use google_auth_oauthlib.helpers.
credentials_from_session() to obtain google.oauthZ.credentials.Credentials from a
requests_oauthlib.OAuth2Session as above:

from google_auth oauthlib.helpers import credentials_from_session

google_auth_credentials = credentials_from_session (ocauth2session)

You can also use google_auth_ocauthlib. flow.Flow to perform the OAuth 2.0 Authorization Grant Flow to
obtain credentials using requests-oauthlib.

1.2.6 External credentials (Workload identity federation)
Using workload identity federation, your application can access Google Cloud resources from Amazon Web Services
(AWS), Microsoft Azure or any identity provider that supports OpenID Connect (OIDC).

Traditionally, applications running outside Google Cloud have used service account keys to access Google Cloud
resources. Using identity federation, you can allow your workload to impersonate a service account. This lets you
access Google Cloud resources directly, eliminating the maintenance and security burden associated with service
account keys.

Accessing resources from AWS

In order to access Google Cloud resources from Amazon Web Services (AWS), the following requirements are needed:
* A workload identity pool needs to be created.

* AWS needs to be added as an identity provider in the workload identity pool (The Google organization policy
needs to allow federation from AWS).

* Permission to impersonate a service account needs to be granted to the external identity.

* A credential configuration file needs to be generated. Unlike service account credential files, the generated
credential configuration file will only contain non-sensitive metadata to instruct the library on how to retrieve
external subject tokens and exchange them for service account access tokens.

Follow the detailed instructions on how to Configure Workload Identity Federation from AWS.

Accessing resources from Microsoft Azure

In order to access Google Cloud resources from Microsoft Azure, the following requirements are needed:
* A workload identity pool needs to be created.

* Azure needs to be added as an identity provider in the workload identity pool (The Google organization policy
needs to allow federation from Azure).

* The Azure tenant needs to be configured for identity federation.

4 Chapter 1. User Guide

https://pypi.python.org/pypi/google-auth-oauthlib
https://requests-oauthlib.readthedocs.io/en/latest/
https://requests-oauthlib.readthedocs.io/en/stable/api.html#requests_oauthlib.OAuth2Session
https://requests-oauthlib.readthedocs.io/en/latest/
https://cloud.google.com/iam/docs/access-resources-aws

google-auth Documentation, Release 1.30.0

» Permission to impersonate a service account needs to be granted to the external identity.

* A credential configuration file needs to be generated. Unlike service account credential files, the generated
credential configuration file will only contain non-sensitive metadata to instruct the library on how to retrieve
external subject tokens and exchange them for service account access tokens.

Follow the detailed instructions on how to Configure Workload Identity Federation from Microsoft Azure.

Accessing resources from an OIDC identity provider
In order to access Google Cloud resources from an identity provider that supports OpenID Connect (OIDC), the
following requirements are needed:

* A workload identity pool needs to be created.

* An OIDC identity provider needs to be added in the workload identity pool (The Google organization policy
needs to allow federation from the identity provider).

» Permission to impersonate a service account needs to be granted to the external identity.

* A credential configuration file needs to be generated. Unlike service account credential files, the generated
credential configuration file will only contain non-sensitive metadata to instruct the library on how to retrieve
external subject tokens and exchange them for service account access tokens.

For OIDC providers, the Auth library can retrieve OIDC tokens either from a local file location (file-sourced creden-
tials) or from a local server (URL-sourced credentials).

* For file-sourced credentials, a background process needs to be continuously refreshing the file location with a
new OIDC token prior to expiration. For tokens with one hour lifetimes, the token needs to be updated in the
file every hour. The token can be stored directly as plain text or in JSON format.

» For URL-sourced credentials, a local server needs to host a GET endpoint to return the OIDC token. The
response can be in plain text or JSON. Additional required request headers can also be specified.

Follow the detailed instructions on how to Configure Workload Identity Federation from an OIDC identity provider.

Using External Identities

External identities (AWS, Azure and OIDC identity providers) can be used with Application Default Creden-
tials. In order to use external identities with Application Default Credentials, you need to generate the JSON
credentials configuration file for your external identity. Once generated, store the path to this file in the
GOOGLE_APPLICATION_CREDENTIALS environment variable.

$ export GOOGLE_APPLICATION_CREDENTIALS=/path/to/config.json

The library can now automatically choose the right type of client and initialize credentials from the context provided
in the configuration file:

import google.auth

credentials, project = google.auth.default ()

When using external identities with Application Default Credentials, the roles/browser role needs to be granted to
the service account. The Cloud Resource Manager APT should also be enabled on the project. This is needed
since default () will try to auto-discover the project ID from the current environment using the impersonated
credential. Otherwise, the project ID will resolve to None. You can override the project detection by setting the
GOOGLE_CLOUD_PROJECT environment variable.

You can also explicitly initialize external account clients using the generated configuration file.

1.2. Obtaining credentials 5

https://cloud.google.com/iam/docs/access-resources-azure
https://openid.net/connect/
https://cloud.google.com/iam/docs/access-resources-oidc

google-auth Documentation, Release 1.30.0

For Azure and OIDC providers, use identity pool.Credentials.from_info or identity_pool.
Credentials.from file:

import json

from google.auth import identity_pool

json_config_info = json.loads (function_to_get_Jjson_config())
credentials identity_pool.Credentials.from_info(json_config_info)
scoped_credentials = credentials.with_scopes (

['https://www.googleapis.com/auth/cloud-platform'])

For AWS providers, use aws . Credentials.from_infoor aws.Credentials.from file:

import json

from google.auth import aws

json_config_info = json.loads (function_to_get_json_config())
credentials aws.Credentials.from_info (json_config_info)
scoped_credentials = credentials.with_scopes (

["https://www.googleapis.com/auth/cloud-platform'])

1.2.7 Impersonated credentials

Impersonated Credentials allows one set of credentials issued to a user or service account to impersonate another. The
source credentials must be granted the “Service Account Token Creator” IAM role.

from google.auth import impersonated_credentials

target_scopes = ['https://www.googleapis.com/auth/devstorage.read_only']
source_credentials = service_account.Credentials.from_service_account_file(
'/path/to/svc_account. json',
scopes=target_scopes)

target_credentials = impersonated_credentials.Credentials(
source_credentials=source_credentials,
target_principal='impersonated-account@_project_.iam.gserviceaccount.com',
target_scopes=target_scopes,
lifetime=500)

client = storage.Client (credentials=target_credentials)

buckets = client.list_buckets (project="your_project')

for bucket in buckets:
print (bucket.name)

In the example above source_credentials does not have direct access to list buckets in the target project. Using
ImpersonatedCredentials will allow the source_credentials to assume the identity of a target_principal that does have
access.

1.2.8 ldentity Tokens

Google OpenID Connect tokens are available through Service Account, Impersonated, and Compute
Engine. These tokens can be used to authenticate against Cloud Functions, Cloud Run, a user service behind Identity
Aware Proxy or any other service capable of verifying a Google ID Token.

ServiceAccount

6 Chapter 1. User Guide

https://developers.google.com/identity/protocols/OpenIDConnect
https://cloud.google.com/functions/
https://cloud.google.com/run/
https://cloud.google.com/iap/
https://cloud.google.com/iap/
https://developers.google.com/identity/protocols/OpenIDConnect#validatinganidtoken

google-auth Documentation, Release 1.30.0

from google.oauth2 import service_account
target_audience = 'https://example.com'
creds = service_account.IDTokenCredentials.from_service_account_file(

'/path/to/svc. json',
target_audience=target_audience)

Compute

from google.auth import compute_engine
import google.auth.transport.requests

target_audience = 'https://example.com'
request = google.auth.transport.requests.Request ()
creds = compute_engine.IDTokenCredentials (request,

target_audience=target_audience)

Impersonated

from google.auth import impersonated_credentials

get target_credentials from a source_ credential
target_audience = 'https://example.com'

creds = impersonated_credentials.IDTokenCredentials (

target_credentials,
target_audience=target_audience)

If your application runs on App Engine, Cloud Run, Compute Engine, or has application default
credentials set via GOOGLE_APPLICATION_CREDENTIALS environment variable, you can also use
google.oauth2.id_token.fetch_id_token to obtain an ID token from your current running environment. The follow-
ing is an example

import google.oauth2.id_token
import google.auth.transport.requests

request = google.auth.transport.requests.Request ()
target_audience = "https://pubsub.googleapis.com"

id_token = google.oauth2.id_token.fetch_id_token (request, target_audience)

IDToken verification can be done for various type of IDTokens using the google.oauth2.id_token module. It
supports ID token signed with RS256 and ES256 algorithms. However, ES256 algorithm won’t be available unless
cryptography dependency of version at least 1.4.0 is installed. You can check the dependency with pip freeze or try
from google.auth.crypt import es256. The following is an example of verifying ID tokens:

from google.auth2 import id_token

request = google.auth.transport.requests.Request()

try: decoded_token = id_token.verify_token(token_to_verify,request)
except ValueError: # Verification failed.

A sample end-to-end flow using an ID Token against a Cloud Run endpoint maybe

1.2. Obtaining credentials 7

https://cloud.google.com/appengine/
https://cloud.google.com/run/
https://cloud.google.com/compute

google-auth Documentation, Release 1.30.0

from google.oauth2 import id_token

from google.ocauth2 import service_account

import google.auth

import google.auth.transport.requests

from google.auth.transport.requests import AuthorizedSession

target_audience = 'https://your-cloud-run-app.a.run.app'
url = 'https://your-cloud-run—-app.a.run.app'
creds = service_account.IDTokenCredentials.from_service_account_file(

'/path/to/svc.json', target_audience=target_audience)
authed_session = AuthorizedSession (creds)

make authenticated request and print the response, status_code
resp = authed_session.get (url)

print (resp.status_code)

print (resp.text)

to verify an ID Token

request = google.auth.transport.requests.Request ()
token = creds.token

print (token)

print (id_token.verify_token (token, request))

1.3 Making authenticated requests

Once you have credentials you can attach them to a fransport. You can then use this transport to make authenti-
cated requests to APIs. google-auth supports several different transports. Typically, it’s up to your application or an
opinionated client library to decide which transport to use.

1.3.1 Requests

The recommended HTTP transport is google.auth. transport.requests which uses the Requests library.
To make authenticated requests using Requests you use a custom Session object:

from google.auth.transport.requests import AuthorizedSession
authed_session = AuthorizedSession (credentials)

response = authed_session.get (
'https://www.googleapis.com/storage/v1l/b")

1.3.2 urllib3

urllib3 is the underlying HTTP library used by Requests and can also be used with google-auth. urllib3’s inter-
face isn’t as high-level as Requests but it can be useful in situations where you need more control over how HTTP
requests are made. To make authenticated requests using urllib3 create an instance of google.auth.transport.
urllib3.AuthorizedHttp:

8 Chapter 1. User Guide

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/user/advanced/#session-objects

google-auth Documentation, Release 1.30.0

from google.auth.transport.urllib3 import AuthorizedHttp
authed_http = AuthorizedHttp(credentials)

response = authed_http.request (
'"GET', 'https://www.googleapis.com/storage/vl/b")

You can also construct your own ur1l1ib3.PoolManager instance and pass it to Aut horizedHttp:

import urllib3

http = urllib3.PoolManager ()
authed_http = AuthorizedHttp (credentials, http)

1.3.3 gRPC

¢RPC is an RPC framework that uses Protocol Buffers over HTTP 2.0. google-auth can provide Call Credentials for
gRPC. The easiest way to do this is to use google-auth to create the gRPC channel:

import google.auth.transport.grpc
import google.auth.transport.requests

http_request = google.auth.transport.requests.Request ()

channel = google.auth.transport.grpc.secure_authorized_channel (
credentials, http_request, 'pubsub.googleapis.com:443")

Note: Even though gRPC is its own transport, you still need to use one of the other HTTP transports with gRPC. The
reason is that most credential types need to make HTTP requests in order to refresh their access token. The sample
above uses the Requests transport, but any HTTP transport can be used. Additionally, if you know that your credentials
do not need to make HTTP requests in order to refresh (as is the case with jwt . Credentials) then you can specify
None.

Alternatively, you can create the channel yourself and use google.auth.transport.grpc.
AuthMetadataPlugin

import grpc
metadata_plugin = AuthMetadataPlugin (credentials, http_request)

Create a set of grpc.CallCredentials using the metadata plugin.
google_auth_credentials = grpc.metadata_call_credentials(
metadata_plugin)

Create SSL channel credentials.
ssl_credentials = grpc.ssl_channel_credentials()

Combine the ssl credentials and the authorization credentials.
composite_credentials = grpc.composite_channel_credentials(
ssl_credentials, google_auth_credentials)

channel = grpc.secure_channel (
'pubsub.googleapis.com:443", composite_credentials)

1.3. Making authenticated requests 9

https://urllib3.readthedocs.io/en/stable/reference/urllib3.poolmanager.html#urllib3.PoolManager
http://www.grpc.io/
https://developers.google.com/protocol-buffers/docs/overview
http://www.grpc.io/docs/guides/wire.html
http://www.grpc.io/docs/guides/auth.html

google-auth Documentation, Release 1.30.0

You can use this channel to make a gRPC stub that makes authenticated requests to a gRPC service:

from google.pubsub.vl import pubsub_pb2

pubsub = pubsub_pb2.PublisherStub (channel)

response = pubsub.ListTopics (
pubsub_pb2.ListTopicsRequest (project="your-project'))

10

Chapter 1. User Guide

CHAPTER 2

google

2.1 google package

Google namespace package.

2.1.1 Subpackages

google.auth package

Google Auth Library for Python.

default (scopes=None, request=None, quota_project_id=None, default_scopes=None)
Gets the default credentials for the current environment.

Application Default Credentials provides an easy way to obtain credentials to call Google APIs for server-to-
server or local applications. This function acquires credentials from the environment in the following order:

1. If the environment variable GOOGLE_APPLICATION_CREDENTIALS is set to the path of a valid service
account JSON private key file, then it is loaded and returned. The project ID returned is the project ID
defined in the service account file if available (some older files do not contain project ID information).

If the environment variable is set to the path of a valid external account JSON configuration file (workload
identity federation), then the configuration file is used to determine and retrieve the external credentials
from the current environment (AWS, Azure, etc). These will then be exchanged for Google access to-
kens via the Google STS endpoint. The project ID returned in this case is the one corresponding to the
underlying workload identity pool resource if determinable.

2. If the Google Cloud SDK is installed and has application default credentials set they are loaded and re-
turned.

To enable application default credentials with the Cloud SDK run:

gcloud auth application-default login

11

https://developers.google.com/identity/protocols/application-default-credentials
https://cloud.google.com/sdk

google-auth Documentation, Release 1.30.0

If the Cloud SDK has an active project, the project ID is returned. The active project can be set using:

gcloud config set project

3. If the application is running in the App Engine standard environment (first generation) then the credentials
and project ID from the App Identity Service are used.

4. If the application is running in Compute Engine or Cloud Run or the App Engine flexible environment or
the App Engine standard environment (second generation) then the credentials and project ID are obtained
from the Metadata Service.

5. If no credentials are found, DefaultCredentialsError will be raised.

Example:

import google.auth

credentials, project_id = google.auth.default ()

Parameters

* scopes (Sequence [str]) — The list of scopes for the credentials. If specified, the
credentials will automatically be scoped if necessary.

* request (Optional [google.auth.transport.Request]) — An object used
to make HTTP requests. This is used to either detect whether the application is run-
ning on Compute Engine or to determine the associated project ID for a workload iden-
tity pool resource (external account credentials). If not specified, then it will either use
the standard library http client to make requests for Compute Engine credentials or a
google.auth.transport.requests.Request client for external account credentials.

* quota_project_id (Optional [str])— The project ID used for quota and billing.

* default_scopes (Optional [Sequence [str]]) — Default scopes passed by a
Google client library. Use ‘scopes’ for user-defined scopes.

Returns the current environment’s credentials and project ID. Project ID may be None, which indi-
cates that the Project ID could not be ascertained from the environment.

Return type Tuple [Credentials,Optional [str]]
Raises DefaultCredentialsError —If no credentials were found, or if the credentials found

were invalid.

load_credentials_from file (filename, scopes=None, default_scopes=None,
quota_project_id=None, request=None)
Loads Google credentials from a file.

The credentials file must be a service account key, stored authorized user credentials or external account creden-
tials.

Parameters
* filename (st r)— The full path to the credentials file.

* scopes (Optional [Sequence [str]])— The list of scopes for the credentials. If
specified, the credentials will automatically be scoped if necessary

* default_scopes (Optional [Sequence [str]]) — Default scopes passed by a
Google client library. Use ‘scopes’ for user-defined scopes.

* quota_project_id (Optional [str])— The project ID used for quota and billing.

12 Chapter 2. google

https://cloud.google.com/appengine
https://cloud.google.com/appengine/docs/python/appidentity/
https://cloud.google.com/compute
https://cloud.google.com/run
https://cloud.google.com/appengine/flexible
https://cloud.google.com/appengine
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Tuple
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/stdtypes.html#str

google-auth Documentation, Release 1.30.0

* request (Optional [google.auth.transport.Request])— An object used to
make HTTP requests. This is used to determine the associated project ID for a workload
identity pool resource (external account credentials). If not specified, then it will use a
google.auth.transport.requests.Request client to make requests.

Returns

Loaded credentials and the project ID. Authorized user credentials do not have the project ID
information. External account credentials project IDs may not always be determined.

Return type Tuple [google.auth.credentials.Credentials,Optional [str]]

Raises google.auth.exceptions.DefaultCredentialsError — if the file is in the
wrong format or is missing.

Subpackages

google.auth.compute_engine package

Google Compute Engine authentication.

class Credentials (service_account_email="default’, quota_project_id=None, scopes=None, de-

fault_scopes=None)
Bases: google.auth.credentials.Scoped, google.auth.credentials.

CredentialsWithQuotaProject
Compute Engine Credentials.

These credentials use the Google Compute Engine metadata server to obtain OAuth 2.0 access tokens associated
with the instance’s service account, and are also used for Cloud Run, Flex and App Engine (except for the Python
2.7 runtime).

For more information about Compute Engine authentication, including how to configure scopes, see the Com-
pute Engine authentication documentation.

Note: On Compute Engine the metadata server ignores requested scopes. On Cloud Run, Flex and App Engine
the server honours requested scopes.

Parameters

* service_account_email (str) — The service account email to use, or ‘default’. A
Compute Engine instance may have multiple service accounts.

* quota_project_id (Optional [str])— The project ID used for quota and billing.
* scopes (Optional [Sequence [str]]) - The list of scopes for the credentials.
* default_scopes (Optional [Sequence [str]]) — Default scopes passed by a
Google client library. Use ‘scopes’ for user-defined scopes.
refresh (request)
Refresh the access token and scopes.

Parameters request (google.auth.transport.Request)— The object used to make
HTTP requests.

Raises google.auth.exceptions.RefreshError — If the Compute Engine metadata
service can’t be reached if if the instance has not credentials.

2.1.

google package 13

https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Tuple
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/stdtypes.html#str
https://cloud.google.com/compute/docs/authentication#using
https://cloud.google.com/compute/docs/authentication#using
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/typing.html#typing.Optional
https://docs.python.org/3.5/library/typing.html#typing.Sequence
https://docs.python.org/3.5/library/stdtypes.html#str

google-auth Documentation, Release 1.30.0

service_account_email
The service account email.

Note: This is not gua